key状态和算子状态
key状态
key状态总是与key有关,只能被用于keyedStream类型的函数与算子。你可以认为key状态是一种被分区的算子状态,每一个key有一个状态分区。每一个key状态逻辑上由<parellel-operator-instance, key>唯一确定,由于每一个key只分布在key算子的多个并发实例中的一个实例上,我们可以将<parellel-operator-instance, key>简化为<operator, key>.
算子(operator)状态
算子状态也称为非key状态。每一个算子状态绑定一个并发算子实例。
kafka connector
是flink算子状态比较好的应用范例。每一个
kafka consumer
并发实例都维护一个Topic分区和分区对应的offset的map,并将此map作为算子状态。
当并发数改变的时候,算子状态支持在并发实例间重新分配状态。有多种不同的重分配策略。
原始的和被管理的状态
key状态和算子状态以两种形式存在:被管理的和原始的。
被管理的状态由flink runtime管理,以一种数据结构表示,比如内部hash表或者RocksDB,例如:
ValueState
,
ListState
等等。flink运行时对状态进行编码,然后写入checkpoints.
原始状态是算子保存到它们自己定义的数据结构中的一种状态。当checkpoint发生的时候,flink仅仅将二进制写入到checkpoint中,它不知道状态的数据结构,仅仅能看见原始的二进制字节数据。
所有的stream数据流Function可以使用被管理的状态,但是当实现算子接口的时候,仅仅能使用原始状态接口。推荐使用被管理的状态而不是原始状态,因为使用被管理状态,当并发度变化的时候,flink能够自动重新分配状态,而且也能够更好地管理内存。
注意: 如果你需要自定义被管理状态的序列化逻辑,为了确保特性兼容,请看 相应的说明 。Flink默认的序列化不需要特别的处理。
使用被管理的Key状态
被管理的Key状态接口能够处理不同类型的状态,包括现有所有输入元素的key。这意味着这类状态仅仅能被用于KeyedStream上。KeyedStream能够通过stream.keyBy(...)创建。
现在,我们首先看一下当前所有的不同类型状态接口,然后我们看一下如何在程序中使用。状态接口类型如下:
- ValueState<T>: 保存一个值。这个值可以被更新或获取(涉及到上面提到的输入元素的key, 每个key中都可能对应一个值)。这个值可以通过update(T)更新,通过T value()获取。
-
ListState<T>:
保存元素列表。可以添加元素和获取当前存储的所有元素
Iterable
对象。使用add(T)或addAll(List<T>)方法添加元素。使用Iterable<T> get()
方法获取iterable对象。也可以通过update(List<T>)
方法覆盖现有的列表。 -
ReducingState<T>:
保存一个值,这个值是添加到状态中所有值的聚合结果。这个接口与
ListState
相似,但是通过add(T)
方法添加的元素会通过指定的ReduceFunction
聚合起来。 -
AggregatingState<IN,OUT>:
保存一个值,这个值是添加到状态的所有值的聚合结果。与
ReducingState
相比,聚合后的数据类型也许与添加进状态的元素类型不同。这个接口与ListState
相同,但是通过add(IN)
添加的元素使用指定的AggregateFunction
对象聚合。 -
FoldingState<T,ACC>:
保存一个值,这个值是添加到状态的所有值的聚合结果。与
ReducingState
相比,聚合结果的类型可能与添加到状态中的元素类型不一样。这个接口与ListState
相似,但是通过add(T)
添加的元素通过指定的FoldFunction
聚合 -
MapState<UK,UV>:
保存一个map对象。你可以将kv键值对放入状态中,也可以获取当前存储的键值列表一个
Iterable
对象。使用put(UK, UK)
或putAll(Map\<UK,UV\>)
方法添加键值对。与key对应的value可以通过get(UK)
获取。map中kv关系,key,value数据分别可以通过entries()
,keys()
和values()
方法获取。
所有类型的state状态接口都有一个clear()方法,能够清除当有输入元素key的状态。
注意:
FoldingState
和
FoldingStateDescriptor
已经在flink1.4中废弃了,将来会完全移除。请用
AggregatingState
和
AggregatingStateDescriptor
代替。
我们要记住两件重要的事,第一件事是上面这些state接口类型仅仅用于与状态交互。状态不一定必须要保存到flink内部,也可以保存到硬盘或其它地方。第二件事是你获取到的状态的值依赖输入元素的key值,所以在同一个user function中如果两次输入流中的key值不一样的话,value也不一样。
为了获得一个状态处理类,你必须要创建一个
StateDescriptor
对象。它里面保存着状态的名字(后面我们会看到,你可以创建多个状态,他们必须有不同的名字,以便你可以根据名字获取状态),状态存储值的类型和一个用户自定义的function,例如一个ReduceFunction。根据你想要存储状态的类型不同,你可以创建
ValueStateDescriptor
,
ListStateDescrptor
,
ReducingStateDescriptor
,
FoldingStateDescriptor
或
MapStateDescriptor
对象。
状态可以通过
RuntimeContext
获取,它只能通过富函数(rich function)获取。请看
这里
详细了解。但是我们也看一个简短的例子。
RichFunction
中的
RuntimeContext
对象有如下方法可以获取状态。
-
ValueState
getState(ValueStateDescriptor ) -
ReducingState
getReducingState(ReducingStateDescriptor ) -
ListState
getListState(ListStateDescriptor ) - AggregatingState<IN, OUT> getAggregatingState(AggregatingStateDescriptor<IN, ACC, OUT>)
- FoldingState<T, ACC> getFoldingState(FoldingStateDescriptor<T, ACC>)
- MapState<UK, UV> getMapState(MapStateDescriptor<UK, UV>)
下面举一个
FlatMapFunction
的例子说明所有部分如何配合的。
public class CountWindoWaverage extends RichFlatMapFunction<Tuple2<Long,Long>, Tuple2<Long,Long>> {
private transient ValueState<Tuple2<Long,Long>> sum;
@Override
public void flatMap(Tuple2<Long,Long> input, Collector<Tuple2<Long,Long>> out) throws Exception {
// 获取状态值
Tuple2<Long,Long> currentSum = sum.value();
// 更新数量
currentSum.f0 += 1;
// 将输入数据累加到第2个字段上
currentSum.f1 += input.f1;
// 更新状态
sum.update(currentSum);
// 如果数量达到2个,计算平均值,发送到下游,并清空状态
if (currentSum.f0 >= 2) {
out.collect(new Tuple2<>(input.f0, currentSum.f1 / currentSum.f0));
sum.clear();
}
}
@Override
public void open(Configuration config) {
ValueStateDescriptor<Tuple2<Long,Long>> descriptor =
new ValueStateDescriptor<>(
"average", // 状态名称
TypeInformation.of(new TypeHint<Tuple2<Long,Long>> () {}), //类型信息
Tuple2.of(0L,0L)); // 状态默认值
sum = getRuntimeContext().getState(descriptor);
}
}
// 可以在流处理程序中像这样使用(假设我们有一个StreamExecutionEnvironment env)
env.fromElements(Tuple2.of(1L, 3L), Tuple2.of(1L, 5L), Tuple2.of(1L, 7L), Tuple2.of(1L, 4L), Tuple2.of(1L, 2L))
.keyBy(0)
.flatMap(new CountWindowAverage())
.print();
// 将打印输出(1,4)和(1,5)
这个例子实现了一个贫血的计数窗口。我们以tuple的第一个字段做为key来分类(这个例子中所有key都为1)。CountWindowAverage类成员变量
ValueState
中存储着实时计算的数量和累加和。一量数量达到2个,它将计算平均值,发送到下游并清空状态,从0开始。需要注意的是,对于不同输入的key(输入元素Tuple的第一个元素值不同),
ValueState
将保存不同的值。
状态存活时间(TTL)
TTL可以被分配给任何类型的key状态。如果key状态设置了TTL,并且状态过期了,状态中存储的值将被清空。后面将详细说明。
所有状态集合的TTL是设置在每个元素上的。这意味着列表和map中每个元素元素过都是过期处理逻辑都是独立的,互不影响
为了使用TTL,首先要创建一个
StateTtlConfig
对象。通过给TTL函数传递这个状态配置对象激活TTL。
import org.apache.flink.api.common.state.StateTtlConfig;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.common.time.Time;
StateTtlConfig ttlConfig = StateTtlConfig
.newBuilder(Time.seconds(1))
.setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite)
.setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired)
.build();
ValueStateDescriptor<String> stateDescriptor = new ValueStateDescriptor<>("text state", String.class);
stateDescriptor.enableTimeToLive(ttlConfig);
配置状态需要考虑以下几个方面:
newBuilder
方法的第一个参数是必须的,它是TTL过期时间。
状态的TTL时间戳需要被刷新,还需要配置更新类型,表示在什么情况下刷新,默认是
OnCreateAndWrite
:
-
StateTtlConfig.UpdateType.OnCreateAndWrite - 仅仅当创建和写入时刷新TTL
-
StateTtlConfig.UpdateType.OnReadAndWrite - 读和写时刷新TTL
状态可见性配置当读取的时候如果过期的值没有被清除的话,是否返回,默认是NeverReturnExpired
: -
StateTtlConfig.StateVisibility.NeverReturnExpired - 从不返回过期的值
-
StateTtlConfig.StateVisibility.ReturnExpiredIfNotCleanedUp - 如果过期的值仍然可以获得则返回
如果设置成
NeverReturnExpired
,过期的状态数据即使没有被清除也获取不到,就好像不存在一样。这个选项在数据过期后必须不可用的情况下是有用的,例如对隐私数据敏感的应用。
另一个选项是
ReturnExpiredIfNotCleanedUp
,如果过期的状态值没有被清除的话,允许返回。
注意:
- 状态存储器除了存储状态值还会存储数据最后一次被修改的时间戳,意味着如果启用TTL这个特性会增加状态存储的开销。堆状态存储器会在内存中存储一个引用用户状态数据的一个java对象,还有一个原始的long类型。RocksDB状态存储器会给每一个值,列表或map中的每个元素都增加8个字节的存储开销。
- 当前仅支持处理时间(processing time)的TTL,不支持事件(event time)的TTL.
-
没有配置TTL,却启动TTL或反之,都会导致兼容失败和
StateMigrationException
。 - TTL配置不是checkpoint或savepoint的一部分,而是flink处理当前正运行Job的一种方式
-
设置TTL的map状态如果想支持null值,仅当状态值序列化器能够处理null值的时候。如果序列化器不支持null值 ,可以使用
NullableSerializer
包装类,但这将多消耗一个字节的存储空间。
过期状态数据的清除
默认情况下,过期的状态数据仅当显示的读取的时候才会被清除,例如调用
ValueState.value()
的时间。
注意: 这意味着如果过期状态数据没有被读取,它将不会被清除,可能导致状态数据的不断增长。在后来的flink版本中可能会改变。
在完全快照时清除
另外,你可以在执行状态完全快照时清除过期的状态值,这将减小快照的大小。在当前flink实现中,本地状态不会被清除,但是当从上一个快照中恢复的时候,不会包括过期的状态。可以在
StateTtlConfig
中配置:
import org.apache.flink.api.common.state.StateTtlConfig;
import org.apache.flink.api.common.time.Time;
StateTtlConfig ttlConfig = StateTtlConfig
.newBuilder(Time.seconds(1))
.cleanupFullSnapshot()
.build();
这个选项不适合于以RocksDB存储状态数据的递增checkpoint.
注意:
-
对于已经存在的job,清除策略可以在任意时间在
StateTtlConfig
中激活或关闭激活,例如:从savepoint重启后
状态存储后端清除
除了在完全快照中清除,你还可以在后端清除。如果状态后端存储支持,下面选项可以激活默认的后端清除策略。
import org.apache.flink.api.common.state.StateTtlConfig;
StateTtlConfig ttlConfig = StateTtlConfig
.newBuilder(Time.seconds(1))
.cleanupInBackground()
.build();
对于更详细的控制某些特别的后端清除策略,你可以按照下面描述的单独配置。当前,堆状态存储依赖递增的清除,RocksDB则使用压缩过滤器。
递增的清除
另一个选项是触发状态的递增清除策略。触发可以是每个状态的获取或每条记录处理时的回调。如果某些状态激活了清除策略,后端的存储将持有一个全局的针对所有元素的惰性迭代器。每次递增清除策略被触发时,迭代器就向前进,会检查经过的元素,过期的状态数据将被清除。
这个特性可以在
StateTtlConfig
激活
import org.apache.flink.api.common.state.StateTtlConfig;
StateTtlConfig ttlConfig = StateTtlConfig
.newBuilder(Time.seconds(1))
.cleanupIncrementally()
.build();
这个策略有两个参数。第一个参数是每次清除触发时检查的元素个数。如果启用,当获取每一个状态数据时都会触发。第二个参数配置每条记录处理时,是否也触发清除。如果你启用默认的后端清除策略,对于堆存储来说,这个策略将在每次状态数据获取时被触发并检查5个元素,并且每条记录被处理时不会触发清除。
注意:
- 如果没有获取状态数据或者没有处理任何记录,过期的状态数据将一直保存
- 花费在递增清除上的时间增加会记录处理的时间
- 当前递增清除仅仅适用于堆存储,为RocksDB设置递增清除没有作用
- 如果堆存储使用同步快照,那么全局的迭代器在迭代时将保存所有key的副本。因为flink目前的实现不支持对状态的并发修改。启用这个特性将增加内存消耗。异步快照没有这个问题
-
对于已经存在的job,清除策略可以在任意时间在
StateTtlConfig
中激活或关闭激活,例如当从savepoint重启的时候。
在RocksDB压缩过程中清除
如果使用RocksDB存储状态,另一个清除策略是激活flink压缩过滤器。RocksDB周期性的执行异步压缩来合并状态更新和减小存储。flink压缩过滤器检查带TTL元素的时间戳,排除掉过期的状态数据。
这个特性默认没有启用。可以通过flink配置文件配置,将
state.backend.rocksdb.ttl.compaction.filter.enabled
设置为true,或者当为某个Job创建自定义RocksDB状态存储时调用
RocksDBStateBackend::enableTtlCompactionFilter
设置。这样设置了TTL的状态将会使用过滤器。
import org.apache.flink.api.common.state.StateTtlConfig
StateTtlConfig ttlConfig = StateTtlConfig
.newBuilder(Time.seconds(1))
.cleanupInRocksdbCompactFilter(1000)
.build();
当处理一定数量的状态数据后,RocksDB压缩过滤器将查询当前时间戳,检查有没有过期。你可以改变它,传递一个自定义值给
StateTtlConfig.newBuilder(...).cleanupInRocksdbCompactFilter(long queryTimeAfterNumEntries)
方法. 更新时间戳越频繁,清除的速度越快,但却降低了压缩性能。因为需要调用JNI本地方法. 如果你启用默认的清除策略(这个策略适用于RocksDB状态存储),在每处理1000个元素后都查询一次当前的时间戳。
如果想为RocksDB过滤器开启本地方法的debug级别日志,可以为
FlinkCompactionFilter
设置日志级别为Debug.
log4j.logger.org.rocksdb.FlinkCompactionFilter=DEBUG
注意:
- 在压缩过程中调用TTL过滤器会减慢flink处理速度。TTL过滤器必须在key正在被压缩的过程中,刷新key对应的每一个value元素的时间戳,并检查是否过期。对于集合类型例如list或map,也将检查其中的每一个元素。
- 如果这个特性用于列表状态,列表的长度不固定。 TTL过滤器必须对每一个元素另外通过JNI调用Java类型的序列化器,由第一个过期的元素决定下一个没过期元素的偏移量。
-
对于已经存在的job,清除策略可以在任意时间在
StateTtlConfig
中激活或关闭激活,例如当从savepoint重启时。
Scala DataStream API中的状态
除了上面讲到的接口, Scala API对于
KeyStream
中使用
ValueState
存储单个状态值的map()或flatmap()函数有更简短的写法。user function从Option对象中得到
ValueState
当前状态值,并返回一个待更新的值。
val stream: DataStream[(String, Int)] = ...
val counts: DataStream[(String, Int)] = stream
.keyBy(_._1)
.mapWithState((in: (String, Int), count: Option[Int]) =>
count match {
case Some(c) => ( (in._1, c), Some(c + in._2) )
case None => ( (in._1, 0), Some(in._2) )
})
使用被管理的算子状态
为了使用被管理的算子状态,必须实现通用的CheckpointedFunction接口,或者实现ListCheckpointed
CheckpointedFunction
CheckpointedFunction接口可以让我们保存不同数据结构的非key对象的状态。我们如果要使用,必须实现以下两个方法:
void snapshotState(FunctionSnapshotContext conetxt) throws Exception;
void initializeState(FunctionInitializationContext context) throws Exception;
每当checkpoint执行的时候都会调用
snapshotState()
方法,而另一个方法,
initializeState()
,则是用户自定义的功能初始化的时候调用,包括首次初始化或者从之前的checkpoint恢复的时候。鉴于此,
initializeState()
不仅包含不同的需要保存状态的数据初始化的逻辑,还需要包含恢复状态的逻辑。
当前,支持列表类型的被管理的算子状态,状态应该是由互相独立的可序列化的对象组成的列表,当伸缩的时候需要重新分配。换言之,这些对象是非key状态分配的最小粒度。根据状态获取方式的不同,定义了以下分配策略:
- 平均分配(Even-split redistribution): 每一个算子返回一个状态集合,整个状态逻辑上是所有列表集合的并集。当恢复或重新分配时,根据并发数平均分配成多个子集,每一个算子获取一个子集合,可能是空集合,也可能包含一个或多个元素。例如,并发度1的时候,一个算子的checkpoint状态包含元素1和元素2,当并发度增加到2的时候,元素1可能被分配到算子0,元素2被分配到算子1.
- 合并分配(union redistribution): 每一个算子返回一个状态的集合,整个状态逻辑上是所有这些列表集合的并集,当恢复或重新分配时,每一个算子都将分配到整个状态的列表集合。
下面是一个带状态的SinkFunction示例,使用平均分配策略,功能是在将一些元素发送给外部系统之前,使用CheckpointedFunction缓存这些元素.
public class BufferingSink
implements SinkFunction <Tuple2<String,Integer>>, CheckpointedFunction {
private final int thresHOLD;
private transient ListState<Tuple2<String, Integer>> checkpoinedState;
private List<Tuple2<String, Integer>> bufferedElements;
public BufferingSink(int threshold) {
this.threshold = threshold;
this.bufferedElements = new ArrayList<>();
}
@Override
public void invoke(Tuple2<String, Integer> value, Context context) throws Exception {
bufferedElement.add(value);
if (bufferedElements.Size() == threshold) {
for (Tuple2<String, Integer> element : bufferedElements) {
// send it to the sink
}
bufferedElement.clear();
}
}
@Override
public void snapshotState(FunctionSnapshotContext context) throws Exception {
checkpointedState.clear();
for (Tuple<String, Integer> element : bufferedElements) {
checkpointedState.add(element);
}
}
@Override
public void initializeState(FunctionInitializationContext context) throws Exception {
ListStateDescriptor<Tuple2<String, Integer>> descriptor =
new ListStateDescriptor<>(
"buffered-elements",
TypeInformation.of(new TypeHint<Tuple2<String, Integer>>(){}));
checkpointedState = context.getOperatorStateStore().getListState(descriptor);
if(context.isRestored()) {
for (Tuple2<String, Integer> element : checkpointedStage.get()) {
bufferedElements.add(element);
}
}
}
}
initializeState
方法接收一个
FunctionInitializationContext
参数。这个参数用于初始化非key的状态"容器"。有一个ListState类型的状态容器,当checkpointing发生的时候,非key的状态会存储在ListState对象中。
注意一下状态容器是如何初始化的,和key状态相似,都需要一个
StateDescriptor
来定义状态名和保存状态的数据类型信息。
ListStateDescriptor<Tuple2<String, Integer>> descriptor =
new ListStateDescriptor<>(
"buffered-elements",
TypeInformation.of(new TypeHint<Tuple2<Long, Long>>() {}));
checkpointedState = context.getOperatorStateStore().getListState(descriptor);
获取状态方法名称的不同代表了不同的分配策略。例如,如果想在恢复的时候使用合并分配策略,获取状态时,使用
getUnionListState(descriptor)
方法。如果方法名不包含分配策略名称,例如:
getListState(descriptor)
,就默认表示将会使用平均分配策略。
在初始化状态容器之后,我们使用
isRestored()
方法来判断当前是否是失败后的恢复,如果是,将执行恢复逻辑。
我们再来看看类
BufferingSink
的代码,
ListState
是成员变量,在
initializeState
方法初始化,以便在
snapshotState
方法中使用。在
snapshotState
方法中,
ListState
首先清除上一次checkpont的所有对象,然后保存这一次需要checkpoint的对象。
顺便提一下,key状态也能使用
initializeState
方法初始化,可以使用
FunctionInitializationContext
对象实现。
ListCheckpointed
ListCheckpointed
是
CheckpointedFunction
的一个变体,有更多的限制条件,仅支持list类型的状态存储,并且只能是平均分配。包含以下两个方法:
List<T> snapshotState(long checkpointId, long timestamp) throws Exception;
void restoreState(List<T> state) throws Exception;
在
snapshotState
方法中,算子应该返回需要保存的list对象,当恢复的时候,在
restoreState
方法中编写恢复list数据的逻辑。 如果状态不需要重新分区,可以在snapshotState方法中返回
Collections.singletonList(MY_STATE)
对象。
Stateful Source函数
相对于其它算子,Stateful source算子有一点特别。为了使更新状态和输出状态原子化(失败/恢复的恰好一次语义要求),必须在source算子的上下文中使用锁。
public static class CounterSource
extends RichParallelSourceFunction<Long>
implements ListCheckpointed<Long> {
/** 恰好一次语义使用的偏移量 */
private Long offset = 0L;
/**job是否取消的标识*/
private volatile boolean isRunning = true;
@Override
public void run(SourceContext<Long> ctx) {
final Object lock = ctx.getCheckpointLock();
while (isRunning) {
// 输出和更新状态是原子化的
synchronized (lock) {
ctx.collect(offset);
offset += 1;
}
}
}
@Override
public void cancel() {
isRunning = false;
}
@Override
public List<Long> snapshotState(long checkpointId, long checkpointTimestamp) {
return Collections.singletonList(offset);
}
@Override
public void restoreState(List<Long> state) {
for (Long s : state)
offset = s;
}
}
当flink checkpoint完全确认的时候,一些算子也许需要与外部系统交换一些信息,这种情况看下
org.apache.flink.runtime.state.CheckpointListener
接口。